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The stochastic approach to chemical kinetics discussed previously is 
specialized to dilute gas reactions. In this limit the stochastic master 
equations are Boltzmann equations for which collision theory is used. 
Internal rearrangement reactions, both in the presence and absence of 
inert diluent, and bimolecular reactions, in the absence of inert diluent, are 
discussed in some detail. In the latter case the "reservoir"  role must be 
played by translational and internal degrees of freedom of the reactants (and 
products) themselves. The rate constants for the reaction can be explicitly 
calculated in terms of cross sections in both the limit of long-lived (i.e., 
internally equilibrated) and that of short-lived (decomposing before ex- 
changing energy with other molecules) "activated complexes." It is found 
that the Arrhenius temperature factors are identical in these two limits. In 
addition the ~ factors are similar but involve slightly different 
averages (over energy) of the same cross sections. 

KEY WORDS: Chemical kinetics; Boltzmann equation; transition state 
theory; gas phase. 

1. I N T R O D U C T I O N  

In  a p r e v i o u s  p a p e r  ~1~ (II)  we  h a v e  e l a b o r a t e d  the  a p p l i c a t i o n  to  ch emi ca l  

r e a c t i o n s  o f  a s t o c h a s t i c  a p p r o a c h  to  m u l t i p a r t i c l e  k ine t i cs  i l l u s t r a t ed  in an 
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earlier article (2~ (I). In I and II it has been assumed that the rates of change of 
populations of molecular microstates in a system undergoing a rate process 
could be described by a stochastic "master equation" in which account 
is taken not only of reactive events in the "system" of interest but also of the 
coupled events among those degrees of freedom (serving as "heat bath" or 
"reservoir") that supply the activation energy required by the reactive 
transitions. This detailed bookkeeping permitted application of both the law 
of energy conservation and that of microscopic reversibility to transitions in 
the system-reservoir combination. With only the further assumption that 
nonreactive events are much more frequent than reactive ones it was possible 
to deduce the familiar proposition that a reaction rate depends on the product 
of a "frequency factor" and the exponential of a "free energy of activation" 
divided by the absolute temperature. However, the "frequency" factor was 
intimately related to the dynamics of the reaction and was not given simply 
by a kinematical factor such as kT/h. Furthermore, a dependence of the 
frequency factor on an effective "number of states" was identified. 

The analysis in I and II did not require the familiar assumption of equi- 
librium between reactant molecules and "activated complex" or "transition 
state" species. The physical basis for the appearance in I and II of the 
exponential dependence on a free energy of activation is entirely different 
from that associated with the conventional treatment, in which this equilib- 
rium assumption is made. 

Even though this equilibrium assumption has often been severely 
questioned, the transition state theory has been widely used in organic and 
inorganic chemistry and biochemistry. The alternatives, the so-called 
"collision theory ''Cs'4~ and "phase space trajectory theory, ''(5~ have been 
restricted in their applicability to reactions in dilute gases. Since in the sto- 
chastic treatment the degrees of freedom that serve as the "reservoir" are not 
restricted to nonreacting degrees of freedom of the reacting molecules them- 
selves but may also be those of solvent molecules, and also since the master 
equation of the stochastic treatment is not obviously restricted to low-density 
application as is the Boltzmann equation of collision theory, the possibility 
exists that the stochastic treatment may provide that generalization of collision 
theory which can encompass reactions in liquids and liquid solution as well 
as those in gases. 

It remains to be shown, however, that the stochastic treatment, or at 
least one of its cases (that of "short-lived activated complex" in II), does 
indeed reduce in the low-density limit to conformity with one of the more 
sophisticated treatments (~,~ of collision theory. To this end we here explore, 
more fully than in II, the consequences of the stochastic treatment in this 
limit. 

Collision theory has been applied to calculation of the temperature 



Application of Stochastic Theory to Dilute Gas Reactions 273 

dependence of rate constants for gas-phase chemical reactions by Ross and 
Mazur C3~ and Eu and Ross. (~ Ross and Mazur showed that an energy 
threshold in the reactive cross section for a molecular gas-phase reaction is 
sufficient to yield a rate constant for the reaction which depends upon a "free 
energy of activation" in the familiar exponential fashion. In II this kind of 
temperature dependence was obtained for arbitrary density, with the condition 
that the generalized transition probability for the chemical reaction shows an 
energy threshold. Eu and Ross showed that a sufficient condition for an 
energy threshold is the formation of a collision complex or resonance during 
the reaction. It is the relationship among these particular treatments that will 
be explored here. We shall expand upon the existing collision theory to con- 
sider in some detail limiting cases of both " long"-  and "short-lived activated 
complexes" (as defined in II) for a bimolecular gas-phase reaction. In the 
case of "short- l ived" activated complexes the results to be obtained here 
may be identified, as expected, with those of Ross and Mazur ~3~ and Eu and 
Ross, <~ as well as with those of II for this case. In the case of "long-lived" 
activated complexes the results obtained here are rigorously identified with 
a low-density form of the corresponding results in I and I1. 

The advantage of treating the limiting cases of both short- and long-lived 
activated complexes in more detail than was possible for arbitrary density in 
II is that we are thus able to compare the rate expressions in the two limits. 
We shall find that the two expressions are very similar. The consequence of 
this similarity is that a calculation of the rate coefficient using either assump- 
tion as to which limit is applicable should yield an accurate value for the co- 
efficient (regardless of  which limit is actually applicable and, indeed, of the 
possibility that neither one is !). 

In II we defined a "long-lived" activated complex as one which persists 
sufficiently long to suffer collisions adequate to equilibrate the ratio of the 
populations of its (internal) microstates. We defined a "short-l ived" activated 
complex as one which decomposes to form products (or reform reactants) 
before undergoing equilibrating collisions. Here we find it convenient to 
break the latter category into two subcategories. One is an activated complex 
which really has identifiable microstates (called a collision complex by Eu 
and Ross (4~) but is nevertheless "shor t  lived." The other is an activated 
complex which is not actually an identifiable intermediate in this sense but 
is defined by the existence of an energy threshold in the cross section for the 
reaction (a consequence of a potential barrier which, in this case, would not 
possess even a shallow minimum in the neighborhood of maxima). 

In Section 2 we consider an isomerization reaction in the gas phase both 
in the presence of inert diluent (serving as reservoir) and in the absence of 
inert diluent (when other degrees of freedom of  reactants and products play 
the reservoir role). We consider there only the case of "long-lived" activated 



274 Paul D. Fleming III and Julian H, Gibbs 

complex. We shall see that the results of our earlier treatments (in I and II) 
for this case are rigorous in the low-density limit. We shall also see that the 
possibility, noted earlier, of  a dependence of the frequency factor on an 
"effective number of states" applies only to those of internal (as opposed to 
translational) degrees of freedom. This result is easily seen to be general in 
the low-density limit and can be assumed for the cases treated in Sections 3 
and 4, although it is not explicitly stated there. In Section 3 we discuss bi- 
molecular reactions in the low-density limit for the case in which the activated 
complex appears only via a threshold in the reaction cross section. There we 
make contact with the results of Ross and Mazur. <~ In Section 4 we consider 
bimolecular reactions in cases where "microstates"  of the activated complex 
can be identified and compare there the cases of long- and short-lived 
activated complexes. This comparison, though confined here to the low- 
density limit, sheds some light on the differences between these cases in 
condensed media as well. 

2. I S O M E R I Z A T I O N  REACTION IN THE  GAS PHASE 

Here we discuss the low-density limit, where all but binary collision 
events can be ignored, for the isomerization process discussed in I, 

A + R ~ - B  + R u  + R (1) 

which occurs in the presence of inert diluent. 
For sufficiently low densities it is well known that the rate of change of 

the phase space distribution for A molecules is governed by a Boltzmann 
equation a 

~-~ + .V fa(rpfl) = E~(rpfl) + R=(rpat) (2) 

in which f~(rpAt) is the density in phase space of molecules of species A in 
internal state a at position r with momentum PA at time t. Here Ea(rpat) and 
R~(rpat) represent the change in f due to nonreactive and reactive collisions, 
respectively. In particular 

~ , ~ f  1 a " r a' 'r' '" E,~(rpAt) = -- , dpA' dpi~ dpa' ~-~ ~mtaPA PR PA P~ ) 

x [ f ( r p ~ t ) f a ( r p A t )  - f~ , (rp~' t ) f~ , (rpa ' t )]  

x 3(PA + P~ - PA' - PR') 3(E~o(pA) + E, (PR) 

- Eo(p2) - E.q,~')) (3) 

a See Ref. 3 and the references therein. 
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and 

R~(rpAt) = -- ~ dpB dpa dp~' ~ ~(apAr'p~'IbpBrp~ ) 
rr 'b  

• [f~,(rpa't)f~(rpAt)-fr(rput)f~(rp, t)] 
•  (pA + - p ,  - + 

- Er(p )) ( 4 )  

where f~ and fb are defined similarly to f~; CrNR and ~R are, respectively, the 
nonreact ing and reacting differentia/ cross sections for the indicated pro- 
cesses; and t~ is the effective mass of  a colliding ( A - R  or B-R)  pair 

(1//z = lima + l/mR = limb + 1ling). 

The single-particle energies are assumed to be of  the form 

Ex(px) = (px2/Zmx) + ex (5) 

where X = A, B, R (later also (2) and x = a, b, r (later c), and Ex is an internal 
energy. 

Clearly f~(r, PB, t) and f~(r, Pc, t) (similarly defined) satisfy equations 
similar to (2). 

For  the purpose o f  discussing homogeneous  chemical reactions in the 
gas phase it is sufficient to seek a solution which is spatially uniform. 4 Thus 
we can assume that  

f~(rpxt)  = f~(pxt)  (6) 

The (time-varying) density of  the Xth  species is related to fx  by 

nx(t) = ~ f dpxfx(Pxt) (7) 

To obtain the analog of  (5) of  II  for  this case we can sum (2) over a and 
integrate over PA to obtain 

dnA(t)dt ~.o f qAB(t) = = ~ dpA dp~ dp~ dp~' 
T , 1  -e 

t t t • --~ ~(apar PR Ibp.rp~)[f~(PAt)fi'(Pa t) 

-- f~(pBt)f~(pat)] 3(Pa + Pa' -- PB -- Pa) 

• ~(E~(pA) + E~,(pR') -- Eb(pB) - E~(p~)) (8) 

4 This assumption is certainly valid for the discussion of ordinary chemical reactions. 
However, when light scattering experiments from reacting mixtures are being discussed, 
it is necessary to keep the spatial dependence of F. See, for example, SimonsJ 6~ 
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The dependence on eNR drops out  because the total number  of  A's [~  nA(t) V, 
where V is the volume] is conserved by ~NR. 

Equat ion (8) is o f  the fo rm of  the "mas te r  equa t ion"  o f  II ,  

qAB(t) = ~ W(apAr'p~'[bpBrpR)[~(pAt)~,(prd) - ~b(p~t)tT~,(p~'t)] (9) 
{~DA}{0DB} 
(rp~,) {r'pR'} 

if we make the identifications s 

and 

[ @x;~x 8 
{Xpx} 

~ x t )  = h3f~(Pxt), x = a, b, c, r, X = A,  B, C, R 

W(apAr'pR'lbpBrpR) = h 6 ~rR(apAr 'p~'IbpBrp~) 
~2AASABSAB3 

x 3(pA + PB' - PB - PB) 

x 3(Ea(PA) + E,,(pa~') - E~(pB) -- er(pu)) 

Here Ax = (h2fl/27rmx) 1:2 (X = A, B, C, R) is the thermal wavelength of  the 
Xth  species (h and fl have their usual meanings). 

The density of  molecules of  species X in internal state x having momen-  
tum Px is related to Rx by 

n~(pxt) ~ x ( p x t ) ( h )  a 
= ,~x 3 = ~xx f~(pxt) (10) 

Thus in this limit we identify 7x = ;~x 3. 
For  this case the internal equilibrium assumption (8) o f  I I  takes the 

fo rm 

f,,(p~r = n,~(t - ~  \~--mx + 

; n~(OPx(px) .  (11) 
where 

e x p ( -  ~fx) = ~ e x p ( -  fi~,) 
x 

is the internal part i t ion function. We expect (1 I) to be valid when reactive 
collisions are infrequent relative to nonreactive collisions, 6 i.e., crtr >> ~R. 

5 This differs from the choice of summation index for momentum states, which is 
~'px = (V/h3) dpx. This measure is obtained, for example, when the molecules are 
confined to a "spherical" box of volume V. We chose instead to employ the thermal 
wavelength ,~x (cubed) to make the momentum summation dimensionless. The advantage 
of this is that the transition probabilities are intensive. Otherwise they would contain 
factors 1IV% 

6 This has been shown to be true by explicit expansion of the exact solution of a certain 
model kinetic equation in powers of aR/aNn in Ref. 6. 
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When (11) is substituted into (8) and the energy conservation implied 
by the ~ function is observed, we obtain, as in 1 and II, 

qAB(t) = ~W~{~A(t )  exp[--fl(fB -- fA)] -- ~( t )}  (12) 

where 

WA~ = ~ f dpA dp~ dp~ dpR '1  , , hB3hR3 -'~ crR(apAr PR Ibp~rpR)Pb(PB)Pr(PR) 
l ' r "  

x ~i(p A + p~' - PB - PrO 

• ~(E~(pA + E~,(p~') - E~(p~)  - E~(pR)) 

and 

C df2AR dpB dp~ v 

T T  t 

x aR(apAr'p~ + PR' - PAIbpsrpR)Pb(PB)P~(PR) 

~x(t) = hx3nx(t) 

f df]A~ denotes integration over the initial (A-R) relative solid angle and 

Var'bT(P~PR) = [VA -- VR] = ; PB -- --mR PR + 2/z(% + Er, -- % -- ~r 

(13) 

is the relative speed of the colliding A and R molecules. We have assumed, 
as in Section 2 of II, that the reservoir concentration is constant. 

Thus we have, in (12), the manifestation at low densities of the "free 
energy of activation" for the processes of "cl imbing" to B previously ob- 
tained in I and II. 

The expression for W2B also allows us to make an identification of the 
"number-of-states" dependence of W~8. We see that W2~ can be expressed 
a s  

ff, p r  ~/ 

where 

x ~(apArpB + pg -- pA[bp~rpR)Pb(pB)P~(pR) 

in which PA is chosen t o b e  consistent with energy conservation (i.e., only its 
angle can be independently specified). We see that the contribution of the 
translational degrees of freedom is a trivial one, arising only through the 
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dependence on the relative solid angle of the velocities of the molecules 
A and R. 

By the procedures outlined in II, we can write WIB in the form 

where 

Tw is defined by 

where 

and 

and 

W2B = 47rCOA~W~B (15) 

3EL SA(Tw) + SR(Tw) (16) 

~AR(Tw) =-- ~ (% -t- %)Pa(Zw)Pr(Zw) -= ~ (E a -t- Er)War (17) 
G,'g c~,l, 

P~,(T) = y dpx Px(Px) b =,,km 

w,~,. = [f df~A~ Wo~r(f~Aa,)]/W~ 

The variances 8egR and 8eAR(T) are defined by 

[~EWR] 2 = ~ [CO, "-}- ~r -- EAR(Tw)]2Wo.,r (18a) 

[SEA~(T) ~] = ~ [% + Er - eAR(T)]2P~(T)PT(T) (18b) 

We note in (15) that only the trivial factor 4rr appears as the contribution 

W,I.B = (1/AB3) ~ f dUtA~*o,(f~AR) 

f @3 @~' Vor'bT(PBpR)__ 
b,r,r' 1) 

x ~R(apAr'pA + PR' - PBIbpBrpR)Pb(PB)P,(P~) 

t3 = (3/2fi/~) ~/2 

(19) 

and where 

where 

~o(f&~) = 

of the translational degrees of freedom. Since the kinetic energies are in- 
dependent of solid angle, only the internal states contribute to the definition 
of Tw. This is consistent with the idea that a chemical reaction primarily 
involves the internal degrees of freedom of the reacting molecules. 

We also note that W ~  is of the suggestive form 
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is the rms 
write (12) in a form reminiscent of kinetic theory, 

qAr~(t) = n~a~{na(t)exp[-fi(f~ - f a ) ]  -- riB(t)} 
where 

Maxwellian relative speed. In terms of (19) it is convenient to 

(20) 

crAB = ~ f d~2Ar~ (ra(~AR) 

and where we have used As = AA. 
The elimination of B can be accomplished, as in I and II, via a steady- 

state assumption. This yields the rate equation for the overall reaction, 

�9 q ( t )  = q A ~ ( t )  = - q o B ( O  

OABO'CB 

aAB + aCB 
x {hA(t) exp[-fl(fB -fA)]  -- no(t) exp[--fi(fB -- fc)]) (21) 

where aoB is defined analogously to gAB. 
It is interesting to consider the case in which there is no inert species 

present so that reactants themselves must play the role of reservoir. Thus we 
consider in the low-density limit the internal rearrangement reaction 

A + X ~ - B  + X ~ - C  + X, X = A , C  (22) 

By an analysis similar to the above we can show that 

dna(t) 
qAB(t) = dt = ~ ~ c,~snx(t){nA(t) exp[--fl(fs -- fa)] -- ns(t)) 

X=A,C 

where 

,,x = ~ f df2Axdp~dpx 

x v~,~.~(PBPx)aR(apAX,px + PB -- pAIbpsxpx)P~(PB)Px(Px) (23) 

X = A , C  

Elimination of nn via a steady-state approximation yields 

[~x=A,c aXBnx(t)][~X=A,C aXnx(t)] 
q(t) = ~ ~X=AC, (ax~ + ~XB)nx(t) 

x {nA(t) exp[--fl(fB -- fA)] -- no(t) exp[-/3(f~ - fc)l} (24) 

In the discussion following (16) of II the possibility of a significant time 
dependence in the average transition probabilities comprising the "frequency 
factor" was noted for cases in which the reacting species themselves must 
play the reservoir role. Equation (24) shows this dependence for reactio'n (22). 
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3. RELATION TO THE T R E A T M E N T  BY ROSS A N D  M A Z U R  

In this section we briefly consider the bimolecular reaction 

A1 + A ~  C1 + C2 (25) 

We do not assume that any complex B (i.e., with corresponding microstates) 
is formed in this reaction. Cases involving both long- and short-lived com- 
plexes B will be treated in the next section. Using identifications analagous 
to those utilized in Section 2 for reaction (25), we readily see that the sto- 
chastic equation which describes the rate of (25) reduces in the low-density 
limit to the Boltzmann equation 

dnA1 f qAo(t) = dt = ~ dp& dpA2 dpcl dpc2 
a la ,  2 
CiC2 

1 
x -~ ~R(a~pA~a2pA21Clpc~c2po2)[f~(pA~t)f~2(pA~t ) 

-f~z(pelt)fe~(Pc~t)] a(PAI + PA2 - Pc~ - Pc2) 
• 8(EoI(PA0 + E~(pA~) -- E . ( P o 0  - Ec~(po~)) (26) 

Equation (26) is identical (with appropriate identification of labels) with that 
employed by Ross and Mazur. (a~ If ~R is assumed to have a threshold energy 
for reaction, we obtain their result of rate constants depending exponentially 
on "free energies of activation" (with preexponentials not necessarily equal 
to kT/h) by methods identical to theirs [or by the methods employed by us to 
obtain (24) of II]. 

4. DETAILED T R E A T M E N T  OF B IMOLECULAR REACTION 
W H E N  M I C R O S T A T E S  OF THE ACT IVATED COMPLEX 
CAN BE IDENTIFIED 

Here we consider in detail the bimolecular reaction discussed in Section 
3 of II and show explicitly the close relationship between the limits of 
" long"-  and "short"-lived "activated complexes." We assume that the 
microscopic dynamics involves events consistent with processes of the form 

A1 + A2~-B~--C1 + C2 (27) 

When B is short-lived, its existence will be manifest theoretically if there 
is a threshold in the reactive cross sections. This threshold constitutes, in 
fact, the definition of "short-lived activated complex." 

In the low-density limit the widths (inverse lifetimes) of the microstates 
of A and C are of the first order in the density [because (27) is bimolecular in 
A and C] and therefore may be made arbitrarily small. However, to the widths 
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of the states of B there must be a contribution which is of zeroth order in the 
density (since the reaction is unimolecular in B). Since this persists at all 
densities, even a kinetic equation for low-density behavior must explicitly 
involve the widths of the states of B. Inclusion of these will permit explicit 
consideration of the distinction between " long" -  a n d "  short"- l ived" activated 
complexes." We have seen in Sections 2 and 3 of II  that the Arrhenius 
temperature dependence appears in the same way regardless of the lifetime 
of the "activated complex." Here we shall see that the forms of the pre- 
exponential factors are only slightly different for the two cases. 

When the lifetime of the activated complex B cannot be neglected, the 
rate equations are no longer of the usual Boltzmann type. 7 It can be shown a 
that the rate equation for the species A1, modified to include the lifetime of B, 
is 

dna~(t) dn&(t) 
qAB = dt dt 

~ f dpAl dpA2 dpB dwn l 
=o o 

x [haf~l(pAlt)f~(pA2t)--f~(pB~ont)] 
x A (pB,oB) + - -  p . )  8(h o  - -  GdP ) - (28)  

Here ,~ = (/3h2/2rrt0v2 = ;~A~h&/AB is the relative thermal wavelength; 
fb(pBwBt) is the phase space density (here assumed uniform in space) of 
molecules B which are in internal state b and which have momentum p~ and 
energy hoJ B at time t; and Ab(pBeoB) is the spectral function 9 which describes 
the widths of the microstates of B. It is related to the "linewidth function" 
Pb(pn~oB) by the Lorentzian-like expression 

Pb(PB~176 (29) 
= { , o  - + 

[Pb(p~Eb(p~)/h)] -~ is essentially the lifetime of a B molecule in internal 
state b having momentum PB and ~r(azpA~a2pA2[bpB) is the cross section 
for the indicated process. In the low-density limit it is simply related to the 

7 However, Boltzmann-like equations for "quasiparticles" are well known in solid state 
and nuclear physics when level widths are in some sense small. The first discussion of 
quasiparticle Boltzmann equations is due to Landau. (7~ A modern derivation of such 
equations from the point of view of quantum field theory is given by Kadanoff and 
Baym. (8~ 

8 This equation has been derived by application of the methods of Kadanoffand Baym, (8~ 
Chapters 3 and 9, by Fleming. (9> 
Notation and nomenclature of Kadanoff and Baym (~ and of Martin and Schwinger51~ 
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corresponding off-diagonal matrix element of the total Hamiltonian of 
the system (9~ by 

Xa/: 
a(aap&a2pA~lbp~) = ~ ](a~pAla2pAyllbpB)l 2 (30) 

qcB(t) is given by an equation analogous to (28) with C's substituted 
for A's. 

The width function Fb(p~wB) must be related to the rate of decay of the 
state {b, PB} into states of A1 and A2 or states of C~ and C2. In particular (9) 

= ( d a o  
Fb(pB~~ ~z-g 2 J ~ v~l~2b(PB~ - p^~lbpQ 

+ 
ClC2 

where 

and 

- -  - -  E ~,1/9, V~:2b(pBco~ ) = [ v ~  - v ~ l  = {2~[hco~ E~(pB)] + eb e~ -- ~2, 

are the relative speeds of the indicated colliding molecules and where d~)x 
denotes integration over the corresponding relative solid angles. 

The usual phase space distribution function for the states of B is related 
to f b ( p ~ t )  by lo 

(32) 

The spectral function A is normalized 11 such that 

2~r Ab(PB~ 1 (33) 

Thus fdpBt) may be regarded as an average off~(p~o~Bt) over energy. 
When the B states are sufficiently long-lived, i.e.,/~hF b << 1, the spectral 

function Ab can be effectively replaced by a 8 function 

(34) 

10 See Chapters 6, 8, and 9 of Kadanoff and Baym. ca~ 
11 Kadanoff and Baym, (a> Chapter 1. 
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When this approximation is valid, (28) may be replaced by the Boltzmann 
equation 

f dp.~ dp.~ dpB 
27rX 3 

1 
x -~ a(alp.la~p.21bpB)[haf~l(pAJ)f~2(p.J) - A(PBt)] (35) 

However, for the purpose of elucidating the relationship between long- and 
short-lived "activated complexes" it is crucial to retain the dependence on 

When the species B are in equilibrium with the species A and C we have 
for low B densities 12 

fi(pBoJBt) = fb(coz) = {exp[--fl(hoJB -- ~B)]}/h 3 (36) 

where I~B is the chemical potential of species B. The equilibrium phase space 
density consistent with t~ is 

( aoJB exp[--fi(h~oB - 
A(P~) = 3 2~ h 3 t~)] Ab(pB~oB ) 

= exp{--fl[Eb(pB) + A~(pB) -- tz.]} 
hS (37) 

where 

exp[-f l  Ab(pB)] ----- f - ~  [exp(-flhoJ)]Ab(pB~ + E~_~s__.~)) 

Clearly Ab(pA) is at least of order hflF. is 
In equilibrium the total density of species B is given by 

nB = dpB exp{- fl[ Eb(PB)h 3 = A-~ 3 

where 

and 

exp(-flfB) = ~ e x p ( - ~ )  
b 

___/= f_a ~ exp[-~EB(p~)] AB 3 

12 Kadanoff and Baym/8~ Chapter 1. There (36) is obtained in the limit/3tz~ --~ - ~. 
t3 Actually it can be shown to be of order (hfiF)L 

(38) 
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with go = % + A~(0) and 

exp[--fiEB(pB)] = ~ exp[--~E~(pB)] exp[--fl(g~ - / B ) ]  

in which Ev(ps) = (p~/2mB) + A~(pB) -- A~(0). 
This enables us to eliminate the chemical potential in favor of the 

density. Thus (36) and (37) respectively, become 

f~(PB) = nB(XBIh) S exp{--fi[E~(pB) + ~ - fB]}  -- nBP~(PB) 
and 

(39) 

fB(WB) = nB(XB/h) a exp[--fl(hwB --/B)] ------ nBPB(~~ (40) 

Thus, when lifetimes cannot be neglected, the equilibrium assumption 

(41) 

[cf. (7) of II or (11) of this paper] is 

/B(pBO)B t) = nB(t)PB(O)B) 

By integration we have 

f~(pBt) = nB(t)ffb(pB) (42) 

Note that  when fihPb << l, XB --+ hB, ~-b --+ Eb, Eb(pB) -+ pB2/2mB, and (42) 
reduces to (11) with X = B. 

When (41) is substituted into (28), we obtain 

. . . .  [AalAa~z riB(t)) gaaB (nAl(t)nA,(t){exp[_fl(f  B _ fA~ -- JA2)J)t---~B ) -- qAB(t) = " ~  (43) 
l 

where 

f dr2. dpB doJB V~la2b(P~O~B) 
~AB = 2~- " = ~(alpA~a2PB - PA~]bPB)/Sb(PB) 

ala2,t  U 

x exp (--fi[h~B + Eb(pB) -- Ab(pB)]}AB(pBwB) 

When flhPB << 1, (43) remains unchanged, except that  XB --~ AB, fB --~fB, 
and the expression for ~*B becomes 

*B = Z f df~. dpB va~2-----2b c~(alpa~a2pB - PA~[bPB)Pb(PR) (44) 
ala2 b 

where v~a2~ = [2/x(eb - %~ - ea~)] 1/2. 
When we eliminate riB(t) from the pair of equations for qaB(t) [Eq. (43)] 

and qcB(t) [equation analogous to (43)] via a steady-state approximation, we 
obtain 

q(t) = qAB(t) = --qeB(t) 

= ~ ~*B~CB ----(A___~B~a({exp[_fl(f B --f^x--f.~)]}nA~(t)nA~(t) 
~*B + ~cB \~B/  

- {exp[-  fi(fB -- fc ,  -- fc~)]}nc~(t)nc~(t)) (45) 
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Equation (45) differs f rom the result we would obtain when/3h170 << 1 
by the trivial factor (AB/XB) 3 and the substitution fB for fB. The point to notice 
is that the assumption of sharply well-defined energies for the B states is not 
crucial to the appearance of the Arrhenius type of temperature factor. 
Equation (45) is valid for B state widths which are sufficiently small that the 
corresponding lifetimes are long compared to nonreactive collision times. 
This case can be imagined even though the nonreactive collisions are bi- 
molecular and the B decay is unimolecular. 

However, it is possible to reduce the pressure so that no collisions occur 
prior to decay. For this case (45) is no longer a good approximation. Thus 
the validity of  (45) is restricted to "h i gh"  gas pressures? 4 For the " I o w " -  
pressure case (28) remains valid, but (42) is no longer a good approximation. 
Therefore we must employ a rate equation which involves a cross section for 
the direct reaction. It  is possible to show ~9> that Eq. (28) can be transformed 
into 

dnA~(t) 
qAe(t) = dt 

= ~ f  dpA~ dPA.~ dpel dpc~ -~ cr~(a~pAla2PA~lc~pc~c2Pc~) 
ClC2 

x [f~(pA~t)f.~(pA2t)-fe,(PcJ)fe2(PcJ)] 
• . 8 ( p ~  + p ~  - pc1 - po~) ~ ( E ~ ( p ~ )  + Eo~(p~)  

- Ec~(pe~) - Ec2(Pa2)) (46) 

where 

C~R(alpAla2pA2 [ ClpclC2Pc2) 

= ~ (2rr)2h'(X% 2)- I~(a~pA~a2PA~[b~PA1 + PA~) 
b 

• ~r(clpc~c2pe21blPel + Pc~) 
• ([EaI(PA1) + Eo~(pA~) -- Eb(P~I + P~2)] 2 

+ (�89 + pa2[E~l(pA~) + EA2(pA,)]/h)}2) -~ 

The equilibrium assumption (11) should be valid for the A's and C's 
for all reasonable gas pressures provided the cross section crR is smaller than 
the corresponding nonreactive cross section crxR, since both the reactive and 

14 Of course, the terms "high" and "low" pressure are only relative. Where the transition 
between the two limits occurs is very sensitive to the relative magnitudes of reactive 
and nonreactive cross sections. 
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nonreact ive  processes are bimolecular .  Then applicat ion of  the now familiar 
procedure  to (46) gives 

qAc(t) = GAc~((exp[--fl(fcl + fc2 -- f a l  -- fA2)]}nAl(t)nA~(t) -- nc~(t)nc2(t)]) 
(47) 

where 

l ~ f  dpAl dpA2 dpcl dPo2 
0102 

1 
• -~ aR(alpA~a2PA2]clpc~czPc2) 8(PA~ + PA2 - Pc1 - Pc2) 

• 8(E~(pA1) + E~2(pA2) -- Ec~(pcl) - Ec2(Pc~))Pc~(Pcl)Pc~(Pc2) 

We notice f rom (46) tha t  for  each pair  of  colliding molecules the cross 
section ~r R has a threshold.  As observed by Ross and Mazur ,  ~3> this is a 
sufficient condit ion for the appearance  of  a " f ree  energy of  ac t ivat ion."  We 
can see how this comes abou t  in this case by inserting integrat ion over 
funct ions of  p~ and ~oB into the definition of  oao. This yields 

~ l a 2  �9 
01c2  

b 

dc~ (2~r)3h3 cr(a~pA~a2pA2[bpA~ + PA~) 

• 8(h~o~ - E o l ( p ~ 3  - E ~ I P ~ ) )  *(P~ - P ~  - P ~ )  

x cr(c~pc~c2pc2[bpc~ + Pc2) 8(h~ - Ec~(pc~) - Ec~(Pc2)) 

• 8(P~ - Pc~ - Pc~)(exp[-/3(hoJB - Eb(p~) -- Ab(p~)]) 

x rb(pBw~)/Sb(PB) exp[ - f l ( fB  - fc l  - fc~)] 

= dpB - ~  {exp[--/3(h~oB -- Eb(p~) -- A ~ ) ) ] } A ~ @ ~ o ~ ) / 5 ~ )  

Cl  C 2 
b 

x fdf~cv,~oz~(p~o~r3cr(cxpclczp~- pcll-bpB)] 

x ~" [~ [ ' d "Av~(P~~  
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• 3 exp[- cr  
\AB/ 

=_ ( ::B__~ x~ iA__9_~aexpt_fl(fB _ fc _ fc,) ] (48) 
\eaB -t- e c B / \ A B ]  

Thus, upon substitution into (47), we obtain 

q(t) = qac(t) 

= 9  ( :AB---~ X'3/A-B~3({exp[--fl(f~ --f.~,--f.,)]}na,(t)n~,(t) 

- {exp[- /3( f~- fc l - fc2) ]}nc~( t )nc2( t ) )  (49) 

Equations (45) and (49) are very similar. The only difference is an inter- 
change in the order of  the averaging over B states and the multiplication of 
the cross sections. It  is hard to imagine pathological cross sections for which 
the two different preexponential factors would differ by more than a few 
percent. 

We note that our results in the " low-pressure"  regime are not only in 
agreement with those of  Ross and Mazur <3) but are also similar to those of  
Eu and Ross, (4> who considered the consequences of  resonant reactive 
scattering on the temperature dependence of chemical reactions. As we see, 
the cross section cr R in (46) is a resonant reaction cross section for the indicated 
scattering process. 

The explicit forms of (45) and (49) allow us to compare their pre- 
exponential factors with the Eyring value kT/h. For simplicity in estimating 
this factor, we assume that A: = A 2 ,  C: = C2, and crAB = aCB= a is 
constant. Then the rate equations (45) and (49) are identical and can be written 
in terms of the dimensionless concentrations 17A and nc as 

dt = ~ ({exp[-fl(f~ - 2f, c)]}~A(t) 2 

- {exp[-/3(fB - 2fc)]}~c(t) 2) (50) 

where A = AA = Ac = (/3/27rm) ~/2 is the common thermal wavelength. The 
width F [Eq. (31)] is given by 

r = 2 ( ~ . / X D  = ~,,/(V~2t~) (51) 

Thus, the preexponential factor is related to the level width of  the 
activated complex by 

ko = ~7o/2A 3 = ( 1 / ' v " : ) F  (52)  

Thus, k0 is kT/h if F = ~/2(kT/h). This corresponds to a level width (un- 
certainty in energy) of  order of  the width of the Maxwellian distribution. 
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The activated complex lifetime corresponding to this width is of the order of 
10-13 sec at room temperature. 

For the "long-lived activated complex," we must have P << kT/h and, 
hence, ko << kT/h. For the "short-lived activated complex," P may be of 

order ~/2 kT/h, but not necessarily equal to it. Thus, we conclude that ko 
may be equal to kT/h, but this factor does not emerge from our analysis in 
any natural way. 

5. D I S C U S S I O N  

We have here explored the implications of the stochastic approach to 
chemical reaction rates in the limit of low densities. It has been shown that 
the analysis given in I and II conforms with that of collision theory in this 
limit and that insights which penetrate further than existing collision theory 
can be obtained even in this well-understood limit. 

The expressions for the rate constants [either (45) or (49)] obtained here 
should have (to a good approximation, at least at low densities) wide applica- 
bility regardless of the lifetime of the activated complexes. The results 
certainly suggest that the main determinant of the temperature dependence 
of the rate of a chemical reaction is the magnitude of the energy necessary to 
surmount its potential barrier, regardless of the time spent in the neighbor- 
hood of the top of the barrier. In addition it is suggested that the value of 
the preexponential factor is also fairly insensitive to the lifetime of the 
"activated" state (although not necessarily equal to the putatively universal 
kT/h). Although the expressions obtained here for the rate constants do 
possess simplicity, they allow for a dependence on the fundamental proba- 
bilities (here cross sections) for the processes involved in the reaction. 
Indeed we must expect differences in reaction rates between systems which are 
weakly coupled and those which are strongly coupled, even when the activa- 
tion energies (or free energies) involved are the same. 

It appears that the stochastic approach, now seemingly certified in the 
low-density limit, provides the basis for a general theory of chemical reaction 
rates, applicable to condensed media as well as to the gas phase. 

We may expect that further progress toward an understanding of the 
stochastic approach may be obtained with use of the methods of quantum 
field theory, C~-1~ some results of which have been utilized here. This formalism, 
which was constructed for the study of elementary particle reactions, 15 
would appear to be particularly useful in the study of chemical reactions, 
since it carries a natural allowance for matrix elements which are off-diagonal 
in particle number. 

15 See, for example, Schweber. c11~ 
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